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Course overview
What are the fundamental building blocks that make up our universe?
 Mission: overview of the past, present, and future of particle physics

1. History of the Standard Model, Part 1: Chemistry to Quantum Mechanics
2. History of the Standard Model, Part 2: Particle zoo and the Standard Model 
3. Particle physics at colliders
4. Beyond the Standard Model at the LHC
5. Neutrino physics
6. Dark matter and cosmology

Goal: Bring you to whatever your next level of understanding is and provide 
resources for when you teach. Not everyone is at the same level and that’s okay.
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Plan for today
• Loose ends from Session 2
• Discussion in breakout rooms

• Lecture: protons, neutrons, neutrinos

• 10 minute break 

• Lecture: particle zoo, quark model
• Homework discussion in breakout rooms – CMS e-lab

• Final logistics, plan for next week
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Loose ends from Session 2
• Recommendation: http://hyperphysics.phy-astr.gsu.edu/hbase/index.html 

• Physics concepts maps from Georgia State

• Feynman diagram tool: https://blog.c0nrad.io/feynman/#/ 
• Lots of other good ones out there, like this “game”: https://web.physik.rwth-

aachen.de/user/harlander/software/feyngame/ 
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Loose ends from Session 2
• What do the arrows mean in Feynman diagrams?

• Time flows left to right
• An arrow pointing right represents a particle
• An arrow pointing left represents an antiparticle
• All QED vertices need one arrow coming in, one going out

• Guarantees conservation of electric charge
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10.1016/j.physletb.2009.11.035

Example next-to-leading 
order (NLO) Feynman 
diagrams for
𝑒! +	𝑒" → 𝑒! +	𝑒" + γ

https://doi.org/10.1016/j.physletb.2009.11.035


Loose ends – discussion 
• How do we smash more modern physics into a general physics course? (I think I 

mean mostly time-wise/planning units-wise? - e.g. what do you cut of the 
traditional/classical stuff)

• How can we connect some of this physics to our curriculum or even other science 
curriculums?

• How do we use the D0 plots in the classroom in a way that the students will 
actually understand?

You all are better equipped to answer that than I am –  time for breakout 
discussions!
 Introduce yourself to today’s group.

Add thoughts to the class google doc (link in chat)
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Particle Physics at Colliders
“Why God particle? The publisher wouldn’t let us 

call it the Goddamn Particle, though that might be 
a more appropriate title.”

- Leon Lederman, The God Particle, 1993
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Why do we need  
accelerators?
• Recall de Broglie: 𝜆 = ℎ/𝑝	

• Higher momentum means 
we can probe smaller 
scales

• Recall Dirac: 
• 𝐸! = 𝑝!𝑐! +	𝑚! 𝑐"

• More energy means we can 
create new particles of 
higher mass

• More energy available in 
head-on collisions → 
colliders!
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Technology drives discovery
• For the last 100 years (and foreseeable future), particle physics has been limited 

by the energies we can reach
Two general classes:
• Hadron colliders (eg proton-proton collisions

at the LHC) 
• Actually quarks within the protons that collide

• Lepton colliders (eg e+e- collisions at LEP)
• Cleaner collisions, but harder to reach high energies

• Other important property: luminosity
• Essentially, the interaction rate of the collider
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Checkpoint: Standard Model in 1974
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Million-dollar question:
Are there more quarks or leptons at 
higher mass?

Observations:
• electron: 1897 by JJ Thomson
• muon: 1937 by Anderson & Neddermeyer
• electron neutrino: 1956 by Cowan & Reines
• muon neutrino: 1962@BNL
• up, down, strange quark: 1968@SLAC
• charm quark: 1974@SLAC, BNL 

Two generations of quarks and leptons



Third generation: τ lepton, 1975
• Discovered in 1975 by Martin Perl’s 

(1927 – 2014) group at SLAC using 
SPEAR 

• Z boson: “neutral current”; 
Z → e+e- or µ+µ- or τ+τ-

• W± bosons: “charged current”; 
W+ → e+νe or µ+νµ or τ+ντ

• Final state: 4 neutrinos, 1 electron, 
1 muon

• Perl’s group observed 64 events
• Current best: mτ = 1.78 GeV
• τ can also decay “hadronically” (i.e. 

into hadrons) 
• Occurs 65% of the time
• But hadrons are messier
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Finishing the 3rd generation
• 1977: Upsilon Υ meson discovered at 

Fermilab by Leon Lederman and his group
• Υ is a bb bound state, mass 9.5 GeV
• Bottom quark mass: 4.2 GeV
• Similar to J/psi discovery of charm quark

• 1995: Top quark discovered at the Fermilab 
Tevatron by the D0 and CDF collaborations
• Mass 173 GeV
• Decays almost 100% of the time to Wb

• Are we done?
• We think so… current evidence favors 3 

generations
• Measurements of the Z peak
• Cosmology constraints from element 

abundances after the Big Bang
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CERN/ALEPH Collaboration



Checkpoint: Standard Model
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Observations:
• electron: 1897 by JJ Thomson
• muon: 1937 by Anderson & Neddermeyer
• electron neutrino: 1956 by Cowan & Reines
• muon neutrino: 1962@BNL
• up, down, strange quark: 1968@SLAC
• charm quark: 1974@SLAC, BNL 
• tau lepton: 1975@SLAC 
• bottom quark: 1977@FNAL 
• top quark: 1995@FNAL
• tau neutrino: 2000@FNAL



What about the bosons? Gluons 
• Gluons are carriers of the strong force
• 1979 discovery: TASSO at PETRA e+e- collider at DESY in Germany
• Search for “3 jet events” from e+e- → qqg

• Jet = spray of particles from decay of quark
• Two spin 1/2 particles (e+e-) cannot lead to three spin 1/2 particles 

→ one jet must be from a boson
• If particle decays into a jet, must have color charge → rules out hadrons like K, π

• Gluon’s spin of 1 was experimentally confirmed a year later
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https://indico.cern.ch/event/704471/contributions/30
12502/attachments/1670841/2680256/Wu.pdf



What about the bosons? W and Z
• W and Z bosons first proposed in 1950s as carriers of the weak force
• Discovered in 1983 by UA1 and UA2 Collaborations at CERN, led by Carlo Rubbia

• Accelerator technology developed by Simon van der Meer
• Z boson: neutral, mass of 91 GeV
• W bosons: charge of ±1, mass of 80 GeV

• W boson changes “flavor” of quarks
• CKM (Cabibbo, Kobayashi, Maskawa) matrix specifies strength 

of flavor-changing interactions between quarks
• Predicted 3 generations back when only 2 had been observed
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Checkpoint: Standard Model
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Observations:
• electron: 1897 by JJ Thomson
• muon: 1937 by Anderson & Neddermeyer
• electron neutrino: 1956 by Cowan & Reines
• muon neutrino: 1962@BNL
• up, down, strange quark: 1968@SLAC
• charm quark: 1974@SLAC, BNL 
• tau lepton: 1975@SLAC 
• bottom quark: 1977@FNAL 
• gluon: 1979@DESY
• W and Z bosons: 1983@CERN
• top quark: 1995@FNAL
• tau neutrino: 2000@FNAL



Last piece of the puzzle
• Last missing piece = Higgs boson

• Higgs mechanism was developed in 
the 1960’s by Peter Higgs, Robert 
Brout, François Englert and others 
to explain how particles get their 
mass
• New particle predicted, the Higgs 

boson 
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Spontaneous symmetry breaking
• Start with non-zero “vaccum expectation 

value” (vev) for the Higgs field φ
• Higgs field “spontaneously” rolls to the 

minimum, breaking the symmetry
• 3 out of 4 degrees of freedom used to give 

mass to the W+, W-, Z0 bosons
• Interaction with the Higgs field gives 

mass to the fermions
• Higher mass = stronger interactions
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https://cds.cern.ch/record/1638469/plots

After symmetry breaking
• φ at minimum
• Higgs field has 1 degree of freedom
• 3 massive gauge bosons + photon
• Separate EM and weak forces

Before symmetry breaking
• Higgs field φ at unstable maximum
• Higgs field has 4 degrees of freedom
• 4 massless bosons
• Unified electroweak force



How a Higgs boson decays
• 1 in 10 billion collisions will contain a Higgs boson
• Each possible way to decay is called a decay channel
• Higher chance to decay into heavy fermions (b, τ)

• Different strategies and tools are used to search for the Higgs in each of 
these channels
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H ® ZZ ® e+e- µ+µ- candidate event
Muon

Muon

Electron

Electron
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H ® ZZ ® µ+µ- µ+µ- Candidate

muon

muon

muon

muon
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Time Evolution of Higgs Boson Data
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Results if no Higgs

Ratio of Measurement to Standard Model Prediction
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Results with Higgs

Ratio of Measurement to Standard Model Prediction
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Ratio of Measurement to Standard Model Prediction

July 2012 Results
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July 4, 2012: Higgs Boson discovery
• Discovered by the ATLAS and CMS Collaborations at CERN
• Higgs → two photons and Higgs → ZZ → 4 leptons
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Standard Model
Observations:
• electron: 1897 by JJ Thomson
• muon: 1937 by Anderson & Neddermeyer
• electron neutrino: 1956 by Cowan & Reines
• muon neutrino: 1962@BNL
• up, down, strange quark: 1968@SLAC
• charm quark: 1974@SLAC, BNL 
• tau lepton: 1975@SLAC 
• bottom quark: 1977@FNAL 
• gluon: 1979@DESY
• W and Z bosons: 1983@CERN
• top quark: 1995@FNAL
• tau neutrino: 2000@FNAL
• Higgs boson: 2012@CERN
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Homework discussion – CMS data
Lots of excellent exploration, questions and discoveries!

• Share what you did and discuss any questions you may have.
• Discuss the physics first, but also feel free to discuss how to use this in class

• First discussion in breakout groups, then discussion as a larger group
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Homework discussion – CMS data
• Are there tutorials on the e-lab? 
• I was not clear as to which graph in CMS e-Lab can show that the dimuons that 

produce the Z have opposite charge since it is neutral.
• Why were the masses not exactly where we expected it to be? (90 vs 91.2 for the Z 

boson, for example)
• What are the “extra” peaks that we cannot match to particles? (for example, in the 

first dataset, it looks like there is a peak at 3.66 GeV if you set the bin to 0.1)
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Homework assignment – lecture 4
1. Look up a recent CMS or ATLAS result that you find interesting. Make a 

one-slide summary to share in breakout groups next week
https://atlas.cern/updates/briefing  or   https://cms.cern/cms-updates

• What was the goal of this analysis and why is it significant? Is this a search for 
new physics or a precision measurement of a predicted Standard Model result? 

• What particles were used in the analysis? Does the summary describe the 
methods or challenges of this analysis?

• What is the result? 
2. Article about the importance of “finding nothing”

https://gizmodo.com/the-scientists-who-look-for-nothing-to-understand-every-1796309514

3. Fill out weekly survey 

• Additional, optional resources are posted to the course website
• Email me with any concerns or questions
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Lecture 4: What’s next? 
Many things left to discover and understand!
• What is dark matter?
• Is there evidence for supersymmetry?
• Why is there so much more matter than antimatter in the universe?
• Why do the different generations of quarks and leptons have such different 

masses?
• Why is gravity so much weaker than the other fundamental forces?

We could find the answers to these questions, or discover something totally 
unexpected!
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End of Part 3
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Overview: Standard Model
Observations:
• electron: 1897 by JJ Thomson
• muon: 1937 by Anderson & Neddermeyer
• electron neutrino: 1956 by Cowan & Reines
• muon neutrino: 1962@BNL
• up, down, strange quark: 1968@SLAC
• charm quark: 1974@SLAC, BNL 
• tau lepton: 1975@SLAC 
• bottom quark: 1977@FNAL 
• gluon: 1979@DESY
• W and Z bosons: 1983@CERN
• top quark: 1995@FNAL
• tau neutrino: 2000@FNAL
• Higgs boson: 2012@CERN
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Earth’s building blocks
• All ordinary matter is made 

from up quarks, down 
quarks, and electrons
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Three generations
• All ordinary matter is made 

from up quarks, down 
quarks, and electrons
• There are three copies, or 
generations, of quarks and 
leptons
• Same properties, only 

heavier
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Neutrinos
• All ordinary matter is made from 

up quarks, down quarks, and 
electrons
• There are three copies, or 
generations, of quarks and 
leptons
• Same properties, only heavier

• Leptons also include neutrinos, 
one for each generation
• Neutrinos have non-zero masses 

can oscillate between flavors– 
Lecture 5

All of these matter particles are 
fermions: they have half integer 
spin
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Force carriers
• The other group of particles in 

the Standard Model are 
bosons: particles with integer 
spin
• These are the force carriers

Strong force

Electromagnetic force

Weak force
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Higgs boson
Higgs boson
• Spin 0: first fundamental scalar
• Higgs mechanism describes how 

particles get their mass
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Fermions:
• Named for Enrico Fermi 

(1901 – 1954)
• Half-integer spin
• “Matter” particles (quarks, 

leptons, neutrinos) 
• Wave functions anticommute
• Obey Fermi-Dirac statistics
• Exclusion principle: Identical 

fermions cannot occupy the same 
quantum state 
• Proposed in 1925 by Wolfgang 

Pauli (1900 – 1958)

Fermions vs bosons
Bosons:
• Named for Satyendra Nath Bose 

(1894 – 1974)
• Integer spin
• “Force-carrying” particles 

(photons, gluons, W/Z bosons)
• Wave functions commute
• Obey Bose-Einstein statistics
• Can all be in the same quantum 

state – for example, lasers
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Colliders – a biased list
• Push to bigger accelerators at higher energies 
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Collider Operation Type Energy Major Discoveries

Super Proton 
Synchrotron (SPS)

1981-1991 proton-
antiproton

540 GeV W and Z bosons, 1983

Large Electron-
Positron Collider

1989-2000 electron-
positron

200 GeV Precision studies of 
W and Z

Tevatron 1985-2011 proton-
antiproton

2 TeV Top quark, 1995

Large Hadron Collider 2009 -
Present

proton-
proton

14 TeV Higgs boson, 2012

The next big collider ? Probably 
electrons?

? ???



CMS Magnet

3.8 T superconducting solenoid magnet, cooled using liquid 
helium
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The ATLAS Detector @ the LHC
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